Monitoring DNA Hybridization with Organic Electrochemical Transistors Functionalized with Polydopamine
نویسندگان
چکیده
Organic electrochemical transistors (OECTs) are finding widespread application in biosensing, thanks to their high sensitivity, broad dynamic range, and low limit of detection. An OECT biosensor requires the immobilization a biorecognition probe on gate, or else channel, through several, often lengthy, chemical steps. In this work, fast straightforward way functionalize carbon gate fully screen-printed by means polydopamine (PDA) film is presented. By an amine-terminated single-stranded oligonucleotide, containing HSP70 promoter CCAAT sequence, PDA film, detection complementary DNA strand demonstrated. Furthermore, specificity developed genosensor assessed comparing its response with one partially noncomplementary oligonucleotides. The sensor shows theoretical (LOD) 100 × 10−15 m range over four orders magnitude.
منابع مشابه
High transconductance organic electrochemical transistors
The development of transistors with high gain is essential for applications ranging from switching elements and drivers to transducers for chemical and biological sensing. Organic transistors have become well-established based on their distinct advantages, including ease of fabrication, synthetic freedom for chemical functionalization, and the ability to take on unique form factors. These devic...
متن کاملErratum: N-type organic electrochemical transistors with stability in water
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the mater...
متن کاملN-type organic electrochemical transistors with stability in water
Organic electrochemical transistors (OECTs) are receiving significant attention due to their ability to efficiently transduce biological signals. A major limitation of this technology is that only p-type materials have been reported, which precludes the development of complementary circuits, and limits sensor technologies. Here, we report the first ever n-type OECT, with relatively balanced amb...
متن کاملDiffusion Driven Selectivity in Organic Electrochemical Transistors
Organic Electrochemical transistors (OECTs) present unique features for their strategic combination with biomedical interfaces, simple and low voltage operation regime and sensing ability in aqueous environment, but they still lack selectivity, so that a significant effort in research is devoted to overcome this limitation. Here, we focus on the diffusion properties of molecular species in the ...
متن کاملFast-switching all-printed organic electrochemical transistors
Symmetric and fast (~ 5 ms) on-to-off and off-to-on drain current switching characteristics have been obtained in screen printed organic electrochemical transistors (OECT) including PEDOT:PSS (poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonic acid)) as the active transistor channel material. Improvement of the drain current switching characteristics is made possible by including...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Macromolecular Materials and Engineering
سال: 2022
ISSN: ['1439-2054', '1438-7492']
DOI: https://doi.org/10.1002/mame.202100880